
© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Felix S Klock II
he/they

Contracts for Rust

1

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

We have some problems

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Problems

Too much invention: Every Rust verification tool invents its own contract dialect

Safe code is not the safe bet: Verification tools often focus on safe code alone, but
validating/verifying Rust’s unsafe code is critically important!

No project support: Neither Rust language nor std library offer formal contracts

• Workaround: Tool supplies an alternative std lib

• Workaround: Inline the contract-free code as the specified behavior (e.g. Kani)

• Workaround: Attach contracts in post-hoc fashion to existing std lib

3

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Too much invention

Safe code is not the safe bet

No project support

The dream: resolve all of these via one
common contract language provided in
the Rust project itself

How do we get there?

4

Problems

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

What does my fantasy contract
system aim to accomplish?

5

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

My weird background

6

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. 7

My weird background

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Static Rules

• Long fascination with static
reasoning

• Java ESC (now JML)

• Type systems (Haskell, FX)

• Model checking

• Proof construction+search+checking;
ACL2

8

Background

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Static Rules

• Long fascination with static
reasoning

• Java ESC (now JML)

• Type systems (Haskell, FX)

• Model checking

• Proof construction+search+checking;
ACL2

versus Dynamic Power

• First ”real” PL was Scheme

• Grad school at Northeastern

• Lots of exposure to Racket Contracts
a la Findler+Felleisen

9

Background

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Too much invention

Safe code is not the safe bet

No project support

The dream: resolve all of these via one
common contract language provided in
the Rust project itself

How do we get there?

10

Problems (revisited)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contracts for Rust:
How to get there, together?

11

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contracts for Rust:
First, establish shared values

12

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contracts for Rust:
First, establish shared values

13

If you disagree with something, note it!

Let’s all argue after I’m
 done talking!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Specification Mechanism, first

• Design by Contract

• pre + post + frame conditions (aka
“requires”, “ensures”, “modifies”)

14

Tenet 1: The purpose of contracts is …

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Specification Mechanism, first

• Design by Contract

• pre + post + frame conditions (aka
“requires”, “ensures”, “modifies”)

Verification Mechanism, second

• Encode formal correctness arguments

• Representation (aka Type) Invariants

• Loop invariants

• Termination measure (aka
“decrementing/decreasing function”)

15

Tenet 1: The purpose of contracts is …

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Anyone can eat

• Can turn on ”contract checking”
without changing toolchain nor
installing 3rd party tool, and get some
utility.
• Why? Because: without above, Rust Project

unlikely to adopt any contracts in lang +
stdlib.

• Caveat: Contracts might become
more useful when used in concert
with 3rd party automated reasoning
tools.

Anyone can cook

• Can add contracts to your own code
without changing toolchain.

16

Tenet 2: (Semi) Useful out-of-the-box

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

An immediate
implication of 2nd
tenet
Require some utility without other tool

⇒

Majority of contracts must have some
dynamic interpretation

17

T e n e t s

image © corythoman
used with permission via Adobe Stock

Contracts should validate code even without
awesome static verification technology

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Dynamic semantics

• Contracts enable modular reasoning

• A broken contract identifies which
component is at fault.

• Precise blame assignment becomes
non-trivial with higher-order
functions (aka OOP, Traits, dynamic
dispatch, etc)

Static semantics

• Contracts enable modular reasoning

• Instead of reasoning about F(G), a
contract allows independent proofs
for F(☐) and G.

18

Tenet 3: Contracts are not just assertions

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Accessible

• Rust contracts should strive for a
syntax that is, or closely matches, the
syntax of Rust code itself

• Any variation is potential hurdle to
use and adoption

• Changes to syntax or semantics must
meet high bar

Expressive Power

• Contracts may need forms that are
not valid Rust code

• E.g. forall x: Type { pred(x) }
• Of course, `forall(|x: Type| { pred(x) })` is

valid syntax adopted by many tools.

• Unavailable to executables
(intentionally)

• E.g. May want intrinisic predicates
that can query memory model
internals (such contracts would be
similarly restricted to miri)

Tenet 4: Balance accessibility over power

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Dynamic Limitations

• Not all properties of interest can be
fully checked at runtime

• E.g. forall a, b: Integer, a + b = b + a

• Devise useful approximations!

Static Limitations

• Full functional correctness specs still
often lie outside realm of economic
feasibility.

• An impoverished contract system may
still be useful for specifying more
conservative functional properties
(e.g. invariant maintenance, memory
safety, panic-freedom, decrementing
functions).

20

Tenet 5: Accept Incompleteness

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tenet 6: Embrace tool diversity

• Different static verification systems will require or support differing levels of
linguistic expressiveness.

• Same holds for dynamic checking!

• E.g. injecting assertions into object code (versus miri or valgrind)

• An ideal contract system needs to account for this in some way

• e.g. perhaps by allowing third-party tools to swap in different contracts (with
more expressive formulae) attached to std library procedures.

21

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tenet 7: Verification cannot be bolted on, but…

• In general, code must be written with verification in mind as one of its design
criteria.

• We cannot expect to add contracts to arbitrary code and be able to get it to
pass a static verifier.

• This does not imply that contracts must be useless for arbitrary code.

• Dynamic contract checks have proven useful for the Racket community.

• Racket development style: add more contracts to the code when debugging
(including, but not limited to, contract failures)

• A validation mechanism can be bolted-on after the fact.

22

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tenets, repeated

1. Specification mechanism first; Verification mechanism second

2. (Semi) Useful out of the box: Anyone can eat, and Anyone can cook

3. Contracts are not just assertions: contracts enable modular reasoning

4. Balance accessibility over power

5. Accept Incompleteness

6. Embrace tool diversity

7. Verification cannot be bolted on, but… validation ≠ verification

23

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Even if we all agreed, where
would this leave us?

24

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nagging questions; naïve ideas

25

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: How will stuff this help my tool again?

Answer: Once we have a contract language built into rustc, we can include its
expressions as part of the compilation pipeline, turning them into HIR, THIR, MIR,
et cetera.

For example, we could add contract-specific intrinsics that map to new MIR
instructions. Then tools can decide to interpret those instructions. rustc, on its
own, can decide whether it wants to map them to LLVM, or into valgrind calls, et
cetera.

(Or compiler could throw them away; but: unused = untested = unmaintained)

This ties into the Stable-MIR project; stay tuned for the talk tomorrow.
26

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: Dynamically check arbitrary contracts?

Example: a dynamic `forall(|x:T| { … })` sounds problematic for most T of interest

Potential solution: `forall!(|x:T| suchas: [x_expr1, x_expr2, …] { … })`

(Static tools can ignore the sample population, and dynamic tools can use them
directly, or feed them into a fuzzer, etc)

27

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: Isn’t proper blame hard?

Answer: Contracts with proper blame, as implemented in Racket, can be very
expensive. (Source: “Is Sound Gradual Typing Dead?”, Takikawa et al., POPL 2016)

But: Do not have to implement blame the same way.

More importantly: Do not have to provide strong blame guarantees out-of-the-
box for contracts to be useful.

I just want proper blame assignment in back of our collective mind.

28

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: I want math without bounds!

Example: Some specifications benefit from using constructs like unbounded
integers, or sequences, or sets. (Especially important for devising abstraction
functions/relations to describe the meaning of a given type.)

Is this in conflict with “Balance accessibility over power”?

Answer A: Indeed, Rust ≠ Haskell..

29

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: I want math without bounds!

Example: Some specifications benefit from using constructs like unbounded
integers, or sequences, or sets. (Especially important for devising abstraction
functions/relations to describe the meaning of a given type.)

Is this in conflict with “Balance accessibility over power”?

Answer B: Two main problems to resolve:

1. Dynamic interpretation may incur unacceptably high overhead

2. Freely copying terms is useful.

30

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: I want math without bounds!

Example: Some specifications benefit from using constructs like unbounded
integers, or sequences, or sets. (Especially important for devising abstraction
functions/relations to describe the meaning of a given type.)

Is this in conflict with “Balance accessibility over power”?

Answer B: Two main problems to resolve:

1. Dynamic interpretation may incur unacceptably high overhead.

2. Freely copying terms is useful.

31

Imagine a spec for `Vec::push`.

How do you dynamically check a generic spec for `v.push(x)` …

e.g. ⎡post(v)⎤ = ⎡pre(v)⎤ ⧺ [x]

… without copying `x`?

(This is my personal independent justification for the choice of
Verus and Pearlite to allow free copying in their spec functions!)

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: I want math without bounds!

Example: Some specifications benefit from using constructs like unbounded
integers, or sequences, or sets. (Especially important for devising abstraction
functions/relations to describe the meaning of a given type.)

Is this in conflict with “Balance accessibility over power”?

Answer B: Two main problems to resolve:

1. Dynamic interpretation may incur unacceptably high overhead.

2. Freely copying terms is useful.

… maybe some forms simply cannot be interpreted via the Rust abstract machine

32

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: What about unsafe code?

Way back on slide 3, we said:

Safe code is not the safe bet: Verification tools often focus on safe code alone,
but validating/verifying Rust’s unsafe code is more important!

I don’t know the complete answer here.

Some dynamic checks would benefit from access to memory model internals.

But in general, checking the correctness of an unsafe abstraction needs type-
specific ghost state (to model permissions, etc). I’m leaving this for future work!

33

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Nag: Is it embracing tools, or keeping distance?

The Embrace Tool Diversity discussion noted

“e.g. perhaps by allowing third-party tools to swap in different contracts (with
more expressive formulae) attached to std library procedures.”

but at the outset that was already discounted as a mere “workaround”:

“Workaround: Attach contracts in post-hoc fashion to existing std lib”

Is above embracing those tools? Or merely blessing existing practice, reluctantly?

Answer: Allowing some contracts to be swapped in is better than forcing them all
to be specified in that manner. My hope is for Rust project to work with
verification tool community to ensure most of our contracts are useful to you.

34

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Concluding thoughts

35

Get th
ose notes ready!

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Tenets, repeated

1. Specification mechanism first; Verification mechanism second

2. (Semi) Useful out of the box: Anyone can eat, and Anyone can cook

3. Contracts are not just assertions: contracts enable modular reasoning

4. Balance accessibility over power

5. Accept Incompleteness

6. Embrace tool diversity

7. Verification cannot be bolted on, but… validation ≠ verification

36

Thanks for listening

