Krabcake: A Rust UB

detector

Felix S. Klock (pnkfelix), Bryan Garza (bryangarza)
Amazon Web Services
Rust Platform Team

demo

source
machine code
binary run

krabcake run

0O o6 O WD K

=
N B O W

SOurce

use krabcake::ClientRequest;

println! ("Hello world (from "sb rs port/main.rs)!");
println! ("BorrowMut is {:x}", ClientRequest::BorrowMut) ;
let mut val: u8 = 101; // 0x65

let x = &mut wval;

let x alias = x as *mut u8;

let vy = &mut *x;

*y = 105; // 0x69

// This could live in *foreign code*
unsafe { *x alias = 103; } // 0x67

let end = *y;

println! ("Goodbye world, end: {}!", end);

0 o Ul LWIN -

S e e e e
OV ONOU B WNRFE OV

879f:
87a4:
87ad:
87b2:
87b7:
87be:
87c3:
87ca:
87cf:

87e7:
87ea:
87£3:
87£8:
87fd:
8802:

88la:
881d:
8820:

movb
movqg
lea
mov
movaps
movups
movaps
movups
lea
[...]
mov
movq
mov
movups
movups
lea
[«..]
movb
movb
movzbl

machine code

$0x65,0x6(%rsp)
$0x4b430000,0x8(%rsp)
0x6(%rsp),%rdi
¢rdi,0x10(%rsp)
0x35842(%rip) , $xmmO0
gxmm0,0x18(%rsp)
0x35846(%rip) , $xmml
gxmml , 0x28 (%rsp)
0x8(%rsp),%rax

$rdi, $rcx
$0x4b430000,0x8(%rsp)
$rdi,0x10(%rsp)
gxmm0,0x18 (%rsp)
gxmml, 0x28 (%rsp)

0x8 (%rsp),%rax

$0x69, (%rdi)
S0x67, (%rcx)
(%rdi), %eax

direct run

1 ./sb_rs port/target/release/sb_rs port
2 Hello world (from “sb rs port/main.rs’)!
3 BorrowMut is 4b430000

4 Goodbye world, end: 103!

O VWO JOo Ul WDN -

krabcake run

$./bin/valgrind -q --tool=krabcake ./sb rs port/target/release/sb _rs port
Hello world (from “rs_hello/src/lib.rs™)!

Hello world (from “sb rs port/main.rs™)!

BorrowMut is 4b430000

--974553-- kc main.c: dispatching code 4b430000

--974553-- lib.rs: handle client request BORROW MUT Ox1lffeffff66
--974553-- kc_main.c: dispatching code 4b430000

--974553-- lib.rs: handle client request BORROW_MUT O0x1lffeffff66
==974553== ALERT could not find tag 2 in stack for address 0xlffeffff66
Goodbye world, end: 103!

Talk Outline

demo
motivation
approaches
our solution
technical details

pulling back the curtain

Motivation

Rust’s promise: control and safety

Control AND Safety

Can you really provide both?

unsafe { ... }istheescape hatch

How can one be confident it is used correctly?

11

Approaches

Stacked Borrows
(aka “SB")

t e Tag = N Scalar = Pointer(¢,t) | z where z € Z

fi
Item = Unique(?) | ... Mem 2 Loc — Scalar x Stack

Stack = List(Item)

Great! A way to discuss correctness of unsafe code!

14

Verification?
Verification tools are great!
But: can they be broadly applied?
Verification requires developer investment

Tools usually assume foreign libraries satisfy
specifications [do not break language invariants

(Kani is an exception; includes foreign code in its
checking. But does not include checking of stacked
borrow semantic rules; not yet.)

15

Miri?
Great test bed; Reference for Stacked Borrows (SB)
Directly expresses SB domains

e.g. Pointers are taken from (Loc x Tag)

Limited in practice: No inline asm nor arbitrary FFI

16

Sanitizer?
A MIR-to-MIR rewrite that injects SB checks?
Doesn’t address SB’'s domains for Scalar and Mem

..or if it does (a la Miri), it breaks interop

17

The Key Problem

e Q: Want foreign interop and pointer tagging
e Al: We could sanitize everything
= .e.recompile all linked C code to inject tags
= pbut .. what would sizeof (T*) return?
(How much would that break?)
m a/so: not realistic! Cannot expect everyone
to recompile world
o A2: Dynamic Binary Instrumentation! i.e. A
Valgrind tool

18

Solution: Krabcake

Krabcake Overview

ustc -Zkrabcake Crate

(annotated) linker host OS+CPU Unchecked Behavior

valgrind
-tool=krabcake .
Checked Behavior

21

Application Code

Dynamically Loaded Code

valgrind
frontend

Valgrind

valgrind

tool instrumented
VEX

valgrind
backend

Running Machine Code

22

Krabcake: Technical
Detalls

From Nicholas Nethercote

(one of Valgrind's two main authors)

“You should read chapter 6 of my thesis”

Formal description of metadata (M-part). This part describes what program/machine entities
the tool “attaches” metadata to. Only three of these attachment points, called M-hooks, are
distinguished.

(a) Global metadata, e.g. Memcheck’s record of the heap, or Cachegrind’s simulated cache

state.

(b) Per-location (register or memory) metadata, e.g. Memcheck’s A (addressability) bits.

(c) Per-value metadata, e.g. Memcheck’s V (validity) bits.

e Per-location — that's the SB Stacks...
e Per-value - that's the SB Tags !!!

25

Shadow Memory

During the VEX to VEX rewrite, inject new operations
that build and maintain shadow state for memory
addresses, registers, and the intermediate SSA
temporaries of the VEX IR.

(Probably hardest implementation step.)

26

A Rust Gotcha for Valgrind

e Q: How can Valgrind implement the SB rules?
e At machine code level, {&mut, &, &raw } are not

distinguishable.
e Al: Valgrind cannot. Not without help.
e A2: rustc -Zkrabcake <input> annotates

the machine code to make them distinguishable.

27

Annotated machine code?

Yes, using the Valgrind “client request” mechanism.

client

Source | _ request _| Valgrind
Code Tool

Trapdoors for code, inserted prior to Valgrind
iInstrumentation. They are specially interpreted
during instrumentation, become communication
channels

Can annotate each &amut- and &-borrow so that the
Valgrind tool can distinguish them from &raw-
borrows !

Isn't that sanitizing?

We do require rustc assistance.

It's implementation (and maintenance!) should be
lightweight.

We don't sanitize the foreign code. All annotations
are injected solely on the Rust side.

29

Pulling Back the
Curtain

One White Lie

Thereisno rustc -Z krabcake flag. Not yet.

Wanted proof-of-concept valgrind tool first.

32

(oo L N (o) W © 2 B ~ S GV I \© I)

e
W N R~ O W

The Real Code

use krabcake::ClientRequest;
println! ("Hello world (from “sb rs port/main.rs)!");

println! ("BorrowMut is {:x}", ClientRequest::BorrowMut);
let mut val: u8 = 101;

let x = kc _borrow mut! (val); // aka ~&mut val~

let x alias = x as *mut u8;

let y = kc_borrow mut! (*x); // aka ~&mut *x°
*y = 105;

unsafe { *x alias = 103; }

let end = *y;

33

0o 0B W N

11
12
13
14
15
16
17
18
19
20
21

What's kc_borrow mut! ?

macro_rules! kc_borrow mut ({
($data:expr) => {{

le
le

//
//
//
//
if

}

}
I3 ¥

t place = &mut S$data;

t raw _ptr = valgrind do client request expr! (
place as *mut u8,

crate: :krabcake: :ClientRequest: :BorrowMut,
place as *mut u8,

0x91, 0x92, 0x93, 0x94); // (these are ignored)

When rustc machinery is in place, "kc_borrow mut! (PLACE) will
be replaced with ~&mut PLACE . Therefore, we go ahead and
convert the “&raw place above into an ~&mut , so that the
appropriate type is inferred for the expression.

true {
unsafe { &mut *raw_ptr }

else {

// return original ~&mut on false branch, forcing lifetimes on
// ~&mut~ above to match lifetimes assigned to original place.
place

34

What's valgrind do _client request expr! ?

1

2 macro_rules! valgrind do_client_request_expr ({
3 ($zzg _default:expr, S$request code:expr,

4 Sargl:expr, Sarg2:expr, $arg3:expr, sSargd:expr, $argS:expr) => {
5 {

6 let zzqg_args = crate::Data {

7 request_code: S$request_code as u64,
8 argl: S$Sargl,

9 arg2: $arg2,

10 arg3: $arg3,

11 argd4: Sarg4,

12 arg5: $arg5,

13 }i

14 let mut zzqg result = $zzq_default;
15

16 unsafe {

17 ::std::arch::asm! (

18 "rol rdi, 3",

19 "rol rdi, 13",
20 "rol rdi, 61",
21 "rol rdi, 51",
22 "xchg rbx, rbx",
23 inout("di") zzq_ result,
24 in("ax") &zzqg_args,
25)i
26 }
27 zzq_result
28 }
29 }

30 }

Also

The tool is not finished yet

(e.g. have not implemented pointer arithmetic in the
shadow memory system)

37

| know you're dissapointed by all
that bad news

But | have good news

The tool ...is In Rust

rs helloisa#![no std] staticlib crate.

kc main.c instruments VEX to add calls into
rs hello, building and manipulating shadow state
(the tags and stacks).

Low barrier for contributions from Rust community!

39

Conclusion

Unsafe code developers need validation tools
Verification is great, if available

Lighter weight tools can be applied to arbitrary
projects with little developer investment

Krabcake wants to fill that niche

If you are interested, reach out!

40

O VWO JOo UL WDN -

Thanks!

$./bin/valgrind -q --tool=krabcake ./sb rs port/target/release/sb _rs port
Hello world (from “rs hello/src/lib.rs™)!

Hello world (from “sb rs port/main.rs™)!

BorrowMut is 4b430000

--974553-- kc main.c: dispatching code 4b430000

--974553-- lib.rs: handle client request BORROW MUT Oxlffeffff66
--974553-- kc _main.c: dispatching code 4b430000

--974553-- lib.rs: handle client request BORROW_MUT O0xlffeffff66
==974553== ALERT could not find tag 2 in stack for address 0xlffeffff66
Goodbye world, end: 103!

41

